
Table of Contents
Abstract . 2
How Google Handles Big Data Daily Operations . 2
 BigQuery: Externalization of Dremel . 2
 Dremel Can Scan 35 Billion Rows Without an 3
 Index in Tens of Seconds
Columnar Storage and Tree Architecture of Dremel 3
 Columnar Storage . 4
 Tree Architecture . 4
 Dremel: Key to Run Business at “Google Speed” 5
 And what is BigQuery? . 5
BigQuery versus MapReduce . 6
 Comparing BigQuery and MapReduce . 6
 MapReduce Limitations . 7
 BigQuery and MapReduce Comparison . 8
Data Warehouse Solutions and Appliances for OLAP/BI 10
 Relational OLAP (ROLAP) . 10
 Multidimensional OLAP (MOLAP) . 10
 Full-scan Speed Is the Solution. . 10
BigQuery’s Unique Abilities . 11
 Cloud-Powered Massively Parallel Query Service 11
 Why Use the Google Cloud Platform? . 12
Conclusion . 12
References . 12
Acknowledgements . 12

An Inside Look at Google BigQuery

White Paper | BigQuery

An Inside Look at Google BigQuery
by Kazunori Sato, Solutions Architect, Cloud Solutions team

Abstract
This white paper introduces Google BigQuery, a fully-managed and cloud-
based interactive query service for massive datasets. BigQuery is the external
implementation of one of the company’s core technologies whose code name
is Dremel. This paper discusses the uniqueness of the technology as a cloud-
enabled massively parallel query engine, the differences between BigQuery
and Dremel, and how BigQuery compares with other technologies such as
MapReduce/Hadoop and existing data warehouse solutions.

How Google Handles Big Data Daily Operations
Google handles Big Data every second of every day to provide services like
Search, YouTube, Gmail and Google Docs.

Can you imagine how Google handles this kind of Big Data during daily
operations? Just to give you an idea, consider the following scenarios:

• What if a director suddenly asks, “Hey, can you give me yesterday’s number
of impressions for AdWords display ads – but only in the Tokyo region?”.

• Or, “Can you quickly draw a graph of AdWords traffic trends for this particular
region and for this specific time interval in a day?”

What kind of technology would you use to scan Big Data at blazing speeds so
you could answer the director’s questions within a few minutes? If you worked
at Google, the answer would be Dremel1.

Dremel is a query service that allows you to run SQL-like queries against very,
very large data sets and get accurate results in mere seconds. You just need a
basic knowledge of SQL to query extremely large datasets in an ad hoc manner.
At Google, engineers and non-engineers alike, including analysts, tech support
staff and technical account managers, use this technology many times a day.

BigQuery: Externalization of Dremel
Before diving into Dremel, we should briefly clarify the difference between
Dremel and Google BigQuery. BigQuery is the public implementation of Dremel
that was recently launched to general availability. BigQuery provides the core
set of features available in Dremel to third party developers. It does so via a
REST API, a command line interface, a Web UI, access control and more, while
maintaining the unprecedented query performance of Dremel.

In this paper, we will be discussing Dremel’s underlying technology, and then
compare its externalization, BigQuery, with other existing technologies like
MapReduce, Hadoop and Data Warehouse solutions.

2

Dremel Can Scan 35 Billion Rows Without an Index in Tens of Seconds
Dremel, the cloud-powered massively parallel query service, shares Google’s
infrastructure, so it can parallelize each query and run it on tens of thousands
of servers simultaneously. You can see the economies of scale inherent
in Dremel.

Google’s Cloud Platform makes it possible to realize super fast query
performance at very attractive cost-to-value ratio. In addition, there’s no capital
expenditure required on the user’s part for the supporting infrastructure.

As an example, let’s consider the following SQL query, which requests the
Wikipedia® content titles that includes numeric characters in it:

select count(*) from publicdata:samples.wikipedia where REGEXP_MATCH
(title, ‘[0-9]*’) AND wp_namespace = 0;

Notice the following:

• This “wikipedia” table holds all the change history records on Wikipedia’s
article content and consists of 314 millions of rows – that’s 35.7GB.

• The expression REGEXP_MATCH(title, ‘[0-9]+’) means it executes a regular
expression matching on title of each change history record to extract rows
that includes numeric characters in its title (e.g. “List of top 500 Major League
Baseball home run hitters” or “United States presidential election, 2008”).

• Most importantly, note that there was no index or any pre-aggregated values
for this table prepared in advance.

When you issue the query above on BigQuery, you get the following results with
an interactive response time of 10 seconds in most cases.

223,163,387

Here, you can see that there are about 223 million rows of Wikipedia change
histories that have numeric characters in the title. This result was aggregated
by actually applying regular expression matching on all the rows in the table as
a full scan.

Dremel can even execute a complex regular expression text matching on a
huge logging table that consists of about 35 billion rows and 20 TB, in merely
tens of seconds. This is the power of Dremel; it has super high scalability and
most of the time it returns results within seconds or tens of seconds no matter
how big the queried dataset is.

Columnar Storage and Tree Architecture of Dremel
Why Dremel can be so drastically fast as the examples show? The
answer can be found in two core technologies which gives Dremel this
unprecedented performance:

1. Columnar Storage. Data is stored in a columnar storage fashion which
makes possible to achieve very high compression ratio and scan throughput.

2. Tree Architecture is used for dispatching queries and aggregating results
across thousands of machines in a few seconds.

3

4

Columnar Storage
Dremel stores data in its columnar storage, which means it separates a record
into column values and stores each value on different storage volume, whereas
traditional databases normally store the whole record on one volume.

This technique is called Columnar storage and has been used in traditional data
warehouse solutions. Columnar storage has the following advantages:

• Traffic minimization. Only required column values on each query are scanned
and transferred on query execution. For example, a query “SELECT top(title)
FROM foo” would access the title column values only. In case of the Wikipedia
table example, the query would scan only 9.13GB out of 35.7GB.

• Higher compression ratio. One study3 reports that columnar storage can
achieve a compression ratio of 1:10, whereas ordinary row-based storage can
compress at roughly 1:3. Because each column would have similar values,
especially if the cardinality of the column (variation of possible column values)
is low, it’s easier to gain higher compression ratios than row-based storage.

Columnar storage has the disadvantage of not working efficiently when
updating existing records. In the case of Dremel, it simply doesn’t support
any update operations. Thus the technique has been used mainly in read-only
OLAP/BI type of usage.

Although the technology has been popular as a data warehouse database
design, Dremel is one of the first implementations of a columnar storage-based
analytics system that harnesses the computing power of many thousands of
servers and is delivered as a cloud service.

Tree Architecture
One of the challenges Google had in designing Dremel was how to dispatch
queries and collect results across tens of thousands of machines in a matter
of seconds. The challenge was resolved by using the Tree architecture. The
architecture forms a massively parallel distributed tree for pushing down
a query to the tree and then aggregating the results from the leaves at a
blazingly fast speed.

Columnar storage of Dremel

5

By leveraging this architecture, Google was able to implement the distributed
design for Dremel and realize the vision of the massively parallel columnar-
based database on the cloud platform.

These previous technologies are the reason of the breakthrough of Dremel’s
unparalleled performance and cost advantage.

For technical details on columnar storage and tree architecture of Dremel,
refer to the Dremel paper1 .

Dremel: Key to Run Business at “Google Speed”
Google has been using Dremel in production since 2006 and has been
continuously evolving it for the last 6 years. Examples of applications include1:

• Analysis of crawled web documents
• Tracking install data for applications in the Android Market
• Crash reporting for Google products
• OCR results from Google Books
• Spam analysis
• Debugging of map tiles on Google Maps
• Tablet migrations in managed Bigtable instances
• Results of tests run on Google’s distributed build system
• Disk I/O statistics for hundreds of thousands of disks
• Resource monitoring for jobs run in Google’s data centers
• Symbols and dependencies in Google’s codebase

As you can see from the list, Dremel has been an important core technology
for Google, enabling virtually every part of the company to operate at “Google
speed” with Big Data.

And what is BigQuery?
Google recently released BigQuery as a publicly available service for any business
or developer to use. This release made it possible for those outside of Google to
utilize the power of Dremel for their Big Data processing requirements.

Tree architecture of Dremel

6

BigQuery provides the core set of features available in Dremel to third party
developers. It does so via a REST API, command line interface, Web UI,
access control, data schema management and the integration with Google
Cloud Storage.

BigQuery and Dremel share the same underlying architecture and performance
characteristics. Users can fully utilize the power of Dremel by using BigQuery
to take advantage of Google’s massive computational infrastructure. This
incorporates valuable benefits like multiple replication across regions and
high data center scalability. Most importantly, this infrastructure requires no
management by the developer.

BigQuery versus MapReduce
In the following sections, we will discuss how BigQuery compares to existing
Big Data technologies like MapReduce and data warehouse solutions.

Google has been using MapReduce for Big Data processing for quite some time,
and unveiled this in a research paper2 in December of 2004. Some readers may
have heard about this product, and its open source implementation Hadoop,
and may wonder about the difference between the two. This is the difference:

• Dremel is designed as an interactive data analysis tool for large datasets
• MapReduce is designed as a programming framework to batch process

large datasets

Moreover, Dremel is designed to finish most queries within seconds or tens
of seconds and can even be used by non-programmers, whereas MapReduce
takes much longer (at least minutes, and sometimes even hours or days) to
finish processing a dataset query.

Comparing BigQuery and MapReduce
MapReduce is a distributed computing technology that allows you to implement
custom “mapper” and “reducer” functions programmatically and run batch
processes with them on hundreds or thousands of servers concurrently. The
following figure shows the data flow involved. Mappers extract words from
text, and reducers aggregates the counts of each word.

Figure 1 Querying Sample Wikipedia Table on BigQuery
(You can try out BigQuery by simply sign up for it.)

77

By using MapReduce, enterprises can cost-effectively apply parallel data
processing on their Big Data in a highly scalable manner, without bearing the
burden of designing a large distributed computing cluster from scratch, or
purchasing expensive high-end relational database solutions or appliances.

In the last several years, Hadoop, the open-source implementation of
MapReduce, has been a popular technology for processing Big Data for
various applications such as log analysis, user activity analysis for social apps,
recommendation engines, unstructured data processing, data mining, and
text mining, among others.

MapReduce Limitations
As a former AdWords API traffic analyst, I sometimes used Google’s internal
MapReduce frontend called Tenzing4 (which is similar to Hive because it
works as a SQL frontend for Hadoop) to execute multiple join operations
across extremely large tables of ads data. The objective was to merge and
filter them, under certain conditions, in order to to extract a list of ads for a
group of accounts. MapReduce works well in scenarios like this, delivering
results in a reasonable amount of time (such as, tens of minutes). If I had used
traditional relational database technology, this same query would have taken
an unreasonable amount time at a high cost, or simply it would have been
impossible to perform the task at all.

However, MapReduce was only a partial solution, capable of handling about
a third of my problem. I couldn’t use it when I needed nearly instantaneous
results because it was too slow. Even the simplest job would take several
minutes to finish, and longer jobs would take a day or more. In addition, if
the result was incorrect due to an error in the MapReduce code I wrote, I’d
have to correct the error and restart the job all over again.

MapReduce is designed as a batch processing framework, so it’s not suitable for
ad hoc and trial-and-error data analysis. The turnaround time is too slow, and
doesn’t allow programmers to perform iterative or one-shot analysis tasks on
Big Data.

Simply put, if I had only used MapReduce, I couldn’t have gone home until the
job was finished late at night. By using Dremel instead of MapReduce on about
two-thirds of all my analytic tasks, I was able to finish the job by lunch time. And
if you’ve ever eaten lunch at Google, you know that’s a big deal.

Figure 2 MapReduce Data Flow

8

The following figure shows a comparison of execution times between MapReduce
and Dremel. As you can see, there is a difference in orders of magnitude.

MapReduce and Dremel are both massively parallel computing infrastructures,
but Dremel is specifically designed to run queries on Big Data in as little as a
few seconds.

BigQuery and MapReduce Comparison
BigQuery and MapReduce are fundamentally different technologies and each
has different use cases. The following table compares the two technologies and
shows where they apply.

Key Differences BigQuery MapReduce

What is it? Query service for large
datasets

Programming model for
processing large datasets

Common use cases Ad hoc and trial-and- error
interactive query of large
dataset for quick analysis
and troubleshooting

Batch processing of
large dataset for time-
consuming data conversion
or aggregation

Sample use cases

OLAP/BI use case Yes No

Data Mining use case Partially (e.g. preflight data
analysis for data mining)

Yes

Very fast response Yes No (takes minutes - days)

Easy to use for non-
programmers (analysts,
tech support, etc)

Yes No (requires Hive/Tenzing)

Programming complex data
processing logic

No Yes

Processing unstructured data Partially (regular expression
matching on text)

Yes

Figure 3 MapReduce and Dremel Execution Time Comparison
The comparison was done on 85 billion records and 3000 nodes. “MR-records” refers to MapReduce
jobs accessing row-based storage whereas “MR-columns” refers to MR jobs with column-based
storage. For more information, refer to section 7. EXPERIMENTS of the Dremel: Interactive Analysis
of Web-Scale Datasets paper1.

9

Data handling

Handling large results /
Join large table

No (as of Sept 2012) Yes

Updating existing data No Yes

Figure 4 MapReduce and BigQuery Comparison

BigQuery is designed to handle structured data using SQL. For example, you
must to define a table in BigQuery with column definition, and then import data
from a CSV (comma separated values) file into Google Cloud Storage and then
into BigQuery. You also need to express your query logic in a SQL statement.
Naturally, BigQuery is suitable for OLAP (Online Analytical Processing) or BI
(Business Intelligence) usage, where most of the queries are simple and done
through a quick aggregation and filtering by a set of columns (dimensions).

MapReduce is a better choice when you want to process unstructured data
programmatically. The mappers and reducers can take any kind of data and
apply complex logic to it. MapReduce can be used for applications such as data
mining where you need to apply complex statistical computation or data mining
algorithms to a chunk of text or binary data. And also, you may want to use
MapReduce if you need to output gigabytes of data, as in the case of merging
two big tables.

For example, users may want to apply these criteria to decide what technology
to use:

Use BigQuery
• Finding particular records with specified conditions. For example, to find

request logs with specified account ID.
• Quick aggregation of statistics with dynamically-changing conditions. For

example, getting a summary of request traffic volume from the previous night
for a web application and draw a graph from it.

• Trial-and-error data analysis. For example, identifying the cause of trouble and
aggregating values by various conditions, including by hour, day and etc...

Use MapReduce
• Executing a complex data mining on Big Data which requires multiple

iterations and paths of data processing with programmed algorithms.
• Executing large join operations across huge datasets.
• Exporting large amount of data after processing.

Of course, you can make the best use of both technologies by combining them
to build a total solution. For example,

• Use MapReduce for large join operations and data conversions, then use
BigQuery for quick aggregation and ad-hoc data analysis on the result dataset.

• Use BigQuery for a preflight check by quick data analysis, then write and
execute MapReduce code to execute a production data processing or
data mining.

10

Data Warehouse Solutions and Appliances for OLAP/BI
Many enterprises have been using data warehouse solutions or appliances for
their OLAP/BI use cases for many years. Let’s examine the advantages of using
BigQuery for these traditional purposes:

In OLAP/BI, you roughly have the following three alternatives for increasing
the performance of Big Data handling.

• Relational OLAP (ROLAP)
• Multidimensional OLAP (MOLAP)
• Full scan

Relational OLAP (ROLAP)
ROLAP is an OLAP solution based on relational databases (RDB). In order
to make RDB faster, you always need to build indices before running OLAP
queries. Without an index, the response will be very slow when running a query
on Big Data. For this reason, you need to build indices for every possible query
beforehand. In many cases, you need to build many indices to cover all the
expected queries, and their size could become larger than original data. If the
data is really large, sometimes the entire set of data and indices would require
ever larger and more complex and expensive hardware to house it.

Multidimensional OLAP (MOLAP)
MOLAP is an OLAP solution that is designed to build data cubes or data marts
based on dimensions predefined during the design phase. For example, if
you are importing HTTP access logs into a MOLAP solution, you would choose
dimensions such as “time of day”, “requested URI” and “user agent” so that
MOLAP can build a data cube featuring those dimensions and aggregated
values. After that, analysts and users can quickly get results for queries such
as “What was the total request count for a specified user agent, grouped by
each time of the day?”.

A weakness of MOLAP is that BI engineers must spend extensive time and
money to design and build those data cubes or data marts before analysts
can start using them. Sometimes these designs can be “brittle”, with even the
slightest schematic changes causing a failure that requires a new investment in
the whole process.

Full-scan Speed Is the Solution
As you can see, neither ROLAP or MOLAP is suitable for ad hoc queries or trial-
and-error data analysis, as you need to define all the possible queries at design
or import time. In the real world, the ad hoc queries are a major part of OLAP
requirement as we see in the case of a Googler’s daily life: You can never imagine
what kind of queries you would need in every possible situation. For these use
cases, you need to increase the speed of full scan (or table scan), accessing all
the records on disk drives without indexing or pre-aggregated values.

As we mentioned in an earlier section, disk I/O throughput is the key to full-
scan performance. Traditional data warehouse solutions and appliances have
tried to achieve better disk I/O throughput with the following technologies:

• In-memory database or flash storage. The most popular solution is to fill
the database appliance with memory modules and flash storage (SSDs)
to process Big Data. This is the best solution if you don’t have any cost
restrictions. Appliance products comprised of SSDs can cost hundreds
of thousands of dollars when used to store Big Data.

11

• Columnar storage. This technology stores each record’s column value in
different storage volumes. This allows for higher compression ratio and
disk I/O efficiency than ordinary row-based storage. Columnar storage
has become a standard technology for data warehouse solutions since
the 1990s; BigQuery (Dremel) fully utilizes it with better optimization.

• Parallel disk I/O. The last and most important factor in improving the
throughput is the parallelism of disk I/O. The full-scan performance will
increase linearly, in relation to the number of disk drives working in parallel.
Some data warehouse appliances provide special storage units that allow you
to run a query in parallel on tens or hundreds of disk drives. But again, since
these appliances and storage solutions are all on-premise and proprietary
hardware products, they tend to be quite expensive.

BigQuery solves the parallel disk I/O problem by utilizing the cloud platform’s
economy of scale. You would need to run 10,000 disk drives and 5,000
processors simultaneously to execute the full scan of 1TB of data within
one second. Because Google already owns a huge number of disk drives in its
own data centers, why not use them to realize this kind of massive parallelism?

BigQuery’s Unique Abilities
Based on Dremel’s novel approach, BigQuery provides extremely high cost-
effectiveness and full-scan performance for ad hoc queries thanks to the unique
combination of a massively parallel query engine.

Cloud-Powered Massively Parallel Query Service
Until now, this level of query performance – full scanning of 35B rows in tens
of seconds without an index – has been achieved only by very expensive data
warehouse appliances or by carefully integrated cluster of database servers
equipped with full memory and flash storage.

Prior to the release of BigQuery, companies were spending hundreds of
thousands of dollars or more to effectively query this amount of data6.

In comparison, BigQuery’s cost is drastically lower. To appreciate the difference
in price, consider the Wikipedia query example we explored at the beginning of
this paper. If you execute the query on BigQuery, it would cost you just $0.32
for each query plus $4.30 per month for Google Cloud Storage. As you can see,
there’s a huge cost savings with BigQuery versus traditional data warehouse
solutions.

Note that BigQuery scans only the required columns for a query, not all the columns.
Each query costs $0.035 per GB as of July 31, 2012. This example query requires 9.13 GB
to scan, so it costs $0.035 x 9.13 GB = $0.32 per query. Refer to the BigQuery pricing table
(https://developers.google.com/bigquery/docs/pricing) for detailed price information.

How to Import Big Data
Importing data into BigQuery is the first challenge to overcome when working
with Big Data.

This is done following this two steps process:

1. Upload your data to Google Cloud Storage. Most of the time, the bottleneck
will be your network bandwidth available to perform this step.

2. Import the files to BigQuery. This step can be executed by a command-line
tool, Web UI or API, which can typically import roughly 100 GB within a half-
hour. Refer to the document (https://developers.google.com/bigquery/
docs/developers_guide#importingatable) for details.

© 2012 Google Inc. All rights reserved. Google, YouTube, the Google logo, and the YouTube logo are trademarks of Google Inc.
All other company and product names may be trademarks of the respective companies with which they are associated.
WP2031-1210

Once these solutions are available, it is easier to extract Big Data from a legacy
database, apply transformations or clean-ups and import them to BigQuery.

Why Use the Google Cloud Platform?
The initial investment required to import data into the cloud is offset by the
tremendous advantages offered by BigQuery. For example, as a fully-managed
service, BigQuery requires no capacity planning, provisioning, 24x7 monitoring
or operations, nor does it require manual security patch updates. You simply
upload datasets to Google Cloud Storage of your account, import them into
BigQuery, and let Google’s experts manage the rest. This significantly reduces
your total cost of ownership (TCO) for a data handling solution.

Growing datasets have become a major burden for many IT department using
data warehouse and BI tools. Engineers have to worry about so many issues
beyond data analysis and problem-solving. By using BigQuery, IT teams can
get back to focusing on essential activities such as building queries to analyze
business-critical customer and performance data.

Also, BigQuery’s REST API enables you to easily build App Engine-based
dashboards and mobile front-ends. You can then put meaningful data into
the hands of associates wherever and whenever they need it.

Conclusion
BigQuery is a query service that allows you to run SQL-like queries against
multiple terabytes of data in a matter of seconds. The technology is one of the
Google’s core technologies, like MapReduce and Bigtable, and has been used
by Google internally for various analytic tasks since 2006. Google has launched
Google BigQuery, an externalized version of Dremel. This release made it
possible for developers and enterprises to utilize the power of Dremel for
their Big Data processing requirements and accelerate their business at the
same swift pace.

While MapReduce is suitable for long-running batch processes such as data
mining, BigQuery is the best choice for ad hoc OLAP/BI queries that require
results as fast as possible. BigQuery is the cloud-powered massively parallel
query database that provides extremely high full-scan query performance
and cost effectiveness compared to traditional data warehouse solutions
and appliances.

Acknowledgements
I would like to thank the people who helped
in writing and reviewing this white paper,
including Ju-kay Kwek, Michael Manoochehri,
Ryan Boyd, Hyun Moon, Chris Elliot, Ning
Tang, Helen Chou, Raj Sarkar, Michael Miele,
Laura Bergheim, Elizabeth Markman, Jim
Caputo, Ben Bayer, Dora Hsu and Urs Hoelzle.
I appreciate your contribution so much.

References
1. Dremel: Interactive Analysis of Web-Scale Datasets http://research.google.com/pubs/pub36632.html
2. MapReduce: Simplified Data Processing on Large Clusters http://research.google.com/archive/mapreduce.html
3. Column-Oriented Database Systems, Stavros Harizopoulos, Daniel Abadi, Peter Boncz, VLDB 2009 Tutorial

http://cs-www.cs.yale.edu/homes/dna/talks/Column_Store_Tutorial_VLDB09.pdf
4. Tenzing A SQL Implementation On The MapReduce Framework http://research.google.com/pubs/pub37200.html
5. Protocol Buffers – Google’s data interchange format http://code.google.com/p/protobuf/
6. Price comparison for Big Data Appliance, Jean-Pierre Dijcks, Oracle Corporation

https://blogs.oracle.com/datawarehousing/entry/price_comparison_for_big_data

